
Sustainable LT resources

How to build language technology resources for
the next 100 years

by Sjur Nørstebø Moshagen



Sustainable LT resources

Introduction

An overview of the whole presentation

why this talk - the overall goal of our LT work

what resources do we care about - and why

how to future-proof those resources (as far as possible)

closing remarks



Sustainable LT resources

Vision

The vision for the work on lesser-resourced languages of
which LT development is but a small part, can be captured
in these points:

linguistic diversity

Language survival

the right of each individual to their own (ie their parents'
language(s))

Possibly Language Revival

The Language Technology part of this vision is:

To make sure small and resource-limited languages are
as usable in our digital world as the top 10 languages.



Sustainable LT resources
Vision

Real-life limitations on
working towards the
vision

limited resources

small communities

we can't assume language-technology knowledge (or
any advanced computer knowledge)

some services and products might be too resource-
intensive to be achievable with the avilable resources

... with the technology we have today

that is, with the present technology our vision won't be fully
implementable for many languages

we have to rely on future technological development to
come to our resque



Sustainable LT resources
Vision

Approaches to work
around the real-life
limitations

Thus, we want to:

minimise redoing earlier work

reduce the number of different resources to the bare
minimum, and then prioritise them

maximise reuse

build user and developer communities

share resources as much as possible

try to prepare as much as possible for future
technological development

These are all good intentions - for the rest of the talk I will
try to substantiate them, based on the experience we have
built in the Divvun and Gieallatekno teams at the
University of Tromsø.



Sustainable LT resources

List of topics to be
covered

I will substantiate the list on the previous slide by covering
the following topics:

What do we mean by LT resources?

rules vs statistics / heuristics

infrastructure sharing

code-sharing

user and developer community

reuse

standards



Sustainable LT resources

LT resources

The language technology resources can be grossly split in
two:

low-level resources:

keyboards, charsets, fonts

linguistic resources:

corpora, grammars, dictionaries

Each of them deserve their own discussion



Sustainable LT resources

Low-level LT resources

To be able to use a language on a computing device, we
need to have at least the following in place:

computer-internal symbol representation - character
encoding

text input - typically keyboards

text output/display - display/output technology (fonts,
speech synthesis, etc)

Without these, no computational operations are possible
on language in the form of text, and no interaction
between humans and computing devices is possible.



Sustainable LT resources
Low-level LT resources

Character endcoding

Up until the 90's character encoding was a traumatic
experience for minority language speakers, and a major
barrier to entry into efficient computing. But then came:

Unicode = character encoding chaos resolved

Unicode is now established as the character encoding
standard, in its different transformation formats.

Since around 2000 the main OS's have supported Unicode,
and they are also regularly updated to include the latest
Unicode standard.

Unicode also has a standardised procedure for how to add
more characters when needed, and it is being updated
continually.

This means that given reasonable documenation, any
missing symbol from any language we may encounter in
the future can and will be added, and as such there are no
major future risks with the machine-level representation of
language symbols.



Sustainable LT resources
Low-level LT resources

Text input

The situation here is very different from that of character
encoding:

new computing paradigms may require new input
methods (cf smart phones, tablet computers)

it is guaranteed that new computing paradigms will
enter the scene over the course of the next 100 years

evidence so far indicates that each new computing
paradigm requires lobbying for the inclusion of
anything but a couple of tens of western and extremely
large languages (e.g. software keyboard on tablets,
speech/handwriting recognition)



Sustainable LT resources
Low-level LT resources

Text input

Input method
technologies

The different input methods can use vastly different
technology:

keyboards (software or hardware)

handwriting recognition

speech recognition

The resource needs are quite different for different input
methods.

Presently keyboard input (by hardware or software
keyboards) is the dominating technology, and it is in itself
quite straightforward.

Since the keyboard technology is pretty straightforward
and well known and tested over many years, the only
reasonable explanation for the lack of keyboard support
for many languages must be something else.



Sustainable LT resources
Low-level LT resources

Text input

Text input hierarchy

Exemplified by iOS support:

languages with Siri voice recognition: 4 (en (*3), fr, de,
ja)

languages with simpler voice recognition: 17 (da, en*3,
fi, fr*2, el, it, ja, zh*3, ko, nl, no, pl, po*2, ru, es*2, sv, de)

languages with keyboard: 44

some languages have several keyboards

not all languages have speller support

all other languages: 6 875 (6 909 - 44)



Sustainable LT resources
Low-level LT resources

Text input

Text input hierarchy
(cont.)

Or to put it in other terms:

languages with Siri voice recognition: biggest European
languages + Japanese

languages with simpler voice recognition: mostly West
European languages + Japanese, Chinese, Korean

languages with keyboard: most (?) remaining European
state languages + some former European colonies +
Cherokee

all other languages/regions



Sustainable LT resources
Low-level LT resources

Text input

The missing languages
in iOS

Africa is represented by one keyboard (Arabic)

Africa south of Sahara doesn't have a single keyboard
layout in iOS!

South and South-East Asia is also completely absent

there are no minority language keyboards except
Cherokee

A number of state languages with distinct alphabets or
scripts have no keyboard (e.g. Bangla)

This is a known story from other platforms - history repeats
itself.

But the strange thing is that there could have been more
languages with very little effort from Apple - it doesn't
have to be like this:



Sustainable LT resources
Low-level LT resources

Text input

The missing languages
in iOS (cont.)

Where is my Sámi keyboard?





Sustainable LT resources
Low-level LT resources

Text input

The missing languages
in iOS (cont.)

Here is my Sámi keyboard:



Sustainable LT resources
Low-level LT resources

Text input

Text input hierarchy on
other platforms

The situation is slightly better on other platforms:

Latest Debian has keyboard layouts for ~85 locales

Latest MacOSX has ~150 keyboard layouts

some languages have multiple layouts

in some cases several languages can share one layout

But the pattern still remains:

there is a huge divide between a handful languages
(speaker independent, continuous speech recognition)
and most of the languages of the world (no input
method at all)

then there are some languages somewhere in between

as we saw above, even for the languages that are "in" to
some degree, some fights must be fought over and over
again it seems



Sustainable LT resources
Low-level LT resources

Text input

Future proofing
keyboard input

Since keyboard layouts are so simple to make (it is all
software), a large number of languages are served by
community initiatives and more or less open source
solutions.

This does solve the immediate problem for each language,
but is not a very good solution in the longer run:

there is no systematic quality assurance of the keyboard
layouts, and thus the quality varies

people must install and configure their keyboards
separately, instead of it being included, tested and
ready for use when they turn on the computing device
the first time

there is no pressure to make sure existing keyboards for
one platform is included when new computing
platforms enter the market

I have no ready receipt for future-proofing keyboard input.

But making keyboard layouts for as many languages as
possible available on open-source platforms will at least
put some pressure on closed-source vendors.





Sustainable LT resources
Low-level LT resources

Text input

Other input
technologies:
recognition

handwriting recognition

speech recognition

Even though the basic technology is language
independent, automatic recognition means a lot of work
for each language.

Handwriting recognition:

not widespread, not required by any widespread
computing platform

thus no motivation to improve it, or expand the
language coverage

unless there comes a new computing device on which
hand-writing recognition is essential, nothing will
happen with the support for most languages of the
world



Sustainable LT resources
Low-level LT resources

Text input

Speech recognition

has been a niche technology until know

will the new smart-phone use of the technology give it a
breakthrough?

very resource-demanding with today's technology, both
for development and during use

The present technologies for working speech recognition
are closed-source

It also needs more resources than are typically available for
the languages we work on

My personal hope goes to future development of a rule
and grammar based speech recognition system

Cf what has happened in the MT field, with Grammarsoft
producing grammar-based translations of the same quality
as the best statistical translators:



Sustainable LT resources
Low-level LT resources

Text input

Rule-based MT
example output

Original Danish:

"NATO’s generalsekretær Anders Fogh Rasmussen
understreger efter et stormøde med samtlige ISAF-
partnere, at den nye operation, som endnu er navnløs, ikke
bare vil være en fortsættelse af den hidtidige operation:"

Google Translate:

"NATO Secretary General Anders Fogh Rasmussen stresses
after a public meeting with all ISAF partners that the new
operation, which is still nameless, will not only be a
continuation of the previous operation:"

Grammarsoft translation:

"NATO's secretary general Anders Fogh Rasmussen
emphasizes after a grand meeting with all ISAF partners
that the new operation, which is still nameless, not just will
be a continuation of the previous [[operation]]:"

That is: rule and grammar-based MT is fully possible, and
thus within reach of lesser-resourced languages, for which
statistical approaches would be completely useless.



Unless the same happens with speech recognition, it will
not be available to these language communities.



Sustainable LT resources
Low-level LT resources

Text output

Printing and displaying text is basically working

There are Unicode fonts with pretty good coverage,
even open-source

But there are some issues:

automatic placement of combining diacritics is not
working reliably

most fonts don't cover the less frequent letters

Both of these issues are hitting hard on the lesser-
resourced languages (and is at the same time completely
invisible to the biggest languages' users)

e.g. Kildin Sámi and many West African Languages must
rely on automatic placement of diacritics

but this doesn't work in all applications or all OS's - you
can't rely on it

no new precomposed characters are allowed in Unicode

... and since all the big languages are covered, this will only
be an issue for the late newcomers, ie all small or
economically uninteresting language communities



I see no easy way out of this - text rendering as we know it
now isn't very future proof for many of our languages



Sustainable LT resources
Low-level LT resources

Text output

Text rendering
compared with
Unicode

The good thing about Unicode was that it turned out as
an all-or-nothing option

If an OS maker added support for Unicode, all
languages were automatically included

There was no option "take the rich and big ones, and
leave the rest out"

But this is what has happened in the text rendering
department.

In addition, the different operating systems have partly
implemented different technologies

There are also third-party initiatives like the SIL Graphite
technology with the aim of solving these problem

But as long as there is no automatic, all-encompasing
solution based on open standards, some languages will
always be left in the cold



Sustainable LT resources
Low-level LT resources

Text output

Other text output
methods

There are other ways of outputting texts:

braille

speech synthesis

Speech synthesis is — in contrast to speech recognition —
not that demanding, and can be built using rule and
grammar-based solutions to a large extent.

The main hindrance is not one of access to large corpora,
but rather lack of detailed phonology grammars and
phonetic descrioptions, and lack of money - it is quite
labor-intensive.

But given the knowledge, expertise and work force, speech
synthesis should be within reach for most language
communities

Recent and future development will likely also help in
reducing the amount of work required to produce new
syntheses.



Sustainable LT resources

Low-level LT Resources
summary

character encoding is solved or solvable for any future
needs

text input is solved in one respect (the technology is
there), but at the same time surprisingly unsolved in
another respect (a very large number of written
languages do not have OS support)

text output is not working well for many of the less-
resourced languages, and I see no easy way of solving
that for the future



Sustainable LT resources

Rule-Based
Technology

I have already hinted at my view that the future is rule-
based, at least for the languages we are discussing here.

In the following discussion, I will just assume that the main
bulk of the code is rule-based:

lexicon

morphology

(morpho)phonology

disambiguation

syntax

etc.

In the 100 year perspective in this presentation there are a
couple of reasons for this:



Sustainable LT resources
Rule-Based Technology

Resource-Limited
Languages

For these languages statistical methods are just not
feasable or workable - there just is not enough text
material to produce useful models

On the other hand - what is always available as long as
there are speakers is inherent grammatical and lexical
knowledge. Rule-based methods basically tries to make
that embodied knowledge explicit, and codify it
according to whatever formalism is in use.

Even though the methods and technologies might
change (and for sure will change in 100 years), the value
of an explicitly encoded grammar, with a full and
productive lexicon, is indispensible.



Sustainable LT resources
Rule-Based Technology

Statistics - the black
box



Sustainable LT resources
Rule-Based Technology

Statistics vs rules -
summary

Even though you can inspect a statistical model to a
certain degree, it doesn't tell you anything about the
language.

The generated rules are random

some might happen to cover true generalisations over the
language

… but some might just as well be accidental and invalid
generalisations

… and you can't know which is which without yourself
having that knowledge.

Which leads us back to the need for humans with the
language competence.



Sustainable LT resources
Rule-Based Technology

Methods will evolve

For sure a lot will happen in a hundred years, both with
rulebased and more heuristic approaches to LT

i am not dismissing the idea that statistical and heuristic
methods can't be useful in the future even to languages
with very limited resources

my point is merely that by starting out rule-based, you
will have a solid foundation for the future, whatever the
future is

starting out with heuristics or statistics is much more
like gambling, which we can't afford in the languages
we are working with

Grammar and rule based formalisms and technologies are
the only viable solution in the long run for lesser-resourced
languages.

With that discussion asside, let's continue with other topics



Sustainable LT resources

Infrastructure Sharing

The biggest cost aside from the pure linguistic
development is infrastructure development and
maintenance.

In the long run the only sensible solution is to build and
share one or a few infrastructure(s) for many languages

this is presently done in e.g. Apertium and in
Giellatekno/Divvun

These two probably aren't the last word said on scalable
infrastructure for language technology for multiple
languages

But they are nevertheless real attempts at building a
working infrastructure and a good starting point for
evaluation and discussion



Sustainable LT resources
Infrastructure Sharing

Benefits

"write once, run everywhere" - heard it before?

but really - the goal is to have an infrastructure that will
scale gracefully with the number of languages

... such that one can write one infrastructure, and it will
work for all languages sharing it

new products or feataures can be made automatically
available to all languages

... but any required linguistic work must of course be done
separately

having a flexible and extendable infrastructure will
remove the burden from the language maintainers, and
will be a cornerstone for being "future-proof"

since infrastructure maintenance is costly in itself,
having a larger user community to build on will spread
the cost

one often under-valued exercise is systematic testing;
with an infrastructure that provides ready-made test
templates and automatic testing as soon as you fill in
the linguistic details, chances are that testing will be
done more frequently





Sustainable LT resources
Infrastructure Sharing

Drawbacks

building a scalable, all-encompassing and tentatively
future-proof infrastructure is considerably more
demanding than making a small, DIY-for-your-own-
needs infrastructure

it isn't always easy to see where to draw the line
between fixed, shared features, and language-specific
variation



Sustainable LT resources

Code Sharing

Code sharing? Human languages are not like
programming languages, so why?

It turns out that there actually is a lot to share:

tags and feature names

higher-order analysis

code structure

perhaps proper nouns



Sustainable LT resources
Code Sharing

Tags And Feature
Names

When designing the linguistic analysis, there are several
things to consider:

established grammatical tradition

the same name for the same phenomenon across
languages

a sensible analysis for the language & phenomenon at
hand

These things do not necessarily go in the same direction,
and choosing which one to follow when they conflict is
not easy.

Following the tradition will make newcomers feel at
home, ease introduction and lower the time it takes to
get up to speed

... but if the grammatical tradition of one language is
very different from other languages, the above principle
might give us very different analyses for similar or
identical phenomenons



Sustainable LT resources
Code Sharing

Tags And Feature Names

Consequences of
differences

Different analyses for similar phenomenon has practical
consequences in both the short and long run:

applications like MT translation will have to add one
extra layer of conversion between languages

cooperation across language teams will be harder

it is one more source for possible bugs and
inconsistencies

There is no clear winner - tradition or cross-language
consistency - but this illustrates that the choice of
seemingly trivial things such as tags and feature names
will have far-reaching consequenses. It can be very hard to
change things after just one year - imagine how it is after
10, 20 or more years.



Sustainable LT resources
Code Sharing

Tags And Feature Names

One example

Does North Sámi have six or seven cases? Ie, should
acc/gen be analysed as one case (forget the name of it
for the moment), or as two? Except for a few pronouns,
the cases are identical everywhere.

But in most other Sámi languages accusative is distinct
from genitive at least in plural. In this case tradition is
following cross-linguistic analysis, so even though you
might argue that a more sensible linguistic analysis
would be to just have one case, we have followed
tradition and the other Sámi languages - and have two
different analysis for what is one and the same word
form.



Sustainable LT resources
Code Sharing

Tags And Feature Names

Another example

We have had different tags and analyses for past tense
negative verbals in some of the Sámi languages, really
by accident and uncoordinated work, not because of
any major linguistic differences between the languages.

This has led to issues when reading, testing and
disambiguating the morphological analyses.

This again leads to inconsistencies, bugs and wasted
time.

We have now finally corrected this, and we have
consistent analyses of negation across all the Sámi
languages



Sustainable LT resources
Code Sharing

Higher-Order Analysis

For the Sámi languages, we use one common
dependency grammar, which takes as input the
syntactically disambiguated sentence.

This has worked wurprisingly well, so well that we have
also tested it with faroese input - with quite acceptable
results.

The more abstract the linguistic representation, the
more you'll find similarities across languages - and thus
more code to share.

Exactly what and how to share will of course vary from
formalism to formalism, but the important thing is to
look for similarities and repeated code.



Sustainable LT resources
Code Sharing

Code Structure

One of the big time savers in our work has been shared
layout and structure of the code.

If the overall organisation of the grammar follows the
same pattern from language to language, it makes it
very easy for a linguist working on one language to
jump in and help with another language, even though
the details are different

You can spend time discussing exactly the linguistic
details that are important, instead of explaining the
organisation of your code - because the other linguists
can see the trees immediately, not only the forrest.

The structure with the best long-term organisation is
not always obvious, and it takes some experience and
iterations to work it out.

Structured code with a shared organisation also helps
debugging the code, and makes it easier to spot errors.

In this respect, linguistic work is just like software
development and coding practices.





Sustainable LT resources
Code Sharing

Code Structure

Examples

organisation of compounding code for compounding
languages

overall organisation of morphological and
morphophonological processes

We are still in the learning phase in the Giellatekno &
Divvun teams for several aspects of our code.

But for the cases where the structure has been worked
out, the benefits are very clear and tangible.

Having a clear and readable code structure is part of
making your code future-proof.



Sustainable LT resources
Code Sharing

Proper Nouns

Our experience is that proper nouns basically fall in two
categories:

language-specific names, typically native names

Other names:

majority language names

international nammes on products, organisations, well-
known politicians etc

Even though the morphology for the names will vary from
language to langauge, the set of relevant names tend to
be the same for all languages.

Sharing a common namebase for the second category (ie
non-native names) will at least give some consistency
across languages.

Caveat: doesn't work well across scripts, so you need one
list for each script, and possibly also for each country in
cases where the language in question is spoken in several
countries.



Sustainable LT resources

Reuse

Design your linguistic components such that they can be
reused as easily as possible

you make transducers for morphological analysis, but
you should also plan them for:

... morphological generation

... spelling

... hyphenation

... use in dictionaries, etc

Not perfect in our infrastructure yet, but we are working
our way towards a modell where we start out with an
all-encompassing transducer

this transducer should have unique symbols and tags
for everything we can imagine

it is in a sense an abstract transducer

then we remove symbols, or subsets of the language, or
change it based on tags and symbols

in the end we should be able to generate all transducers
we need from this single starting point, using just fst
manipulations.





Sustainable LT resources
Reuse

Reuse (cont.)

This way we reuse one component in many contexts,
and the reuse is easily extendable in a programmatic
way

New uses might require new tags, which equals new
info in the lexicon. That is always a substantial amount
of work, but will just make the lexicon richer (and
usually more correct) for each iteration

We have been going through our lexicons many times
already.



Sustainable LT resources

Standards

Standards evolve with technology, and as such reflect the
present (or close past) of the technological development.

But some standards are really icebreakers and
revolutions for lesser-resourced languages.

Unicode is such a standard. Without it most of the
world's languages would have been without a realistic
chance to become usable in the digital society.

XML is another such standard (but not all the document
schemas written in XML).

At least Unicode have a chance to be important for text
processing in 50-100 years.

XML might have a chance, but even if it is dead
technology then, structured texts are so important that
it won't be replaced with something with less structural
capabilities.

(Then again, text might not be very relevant in 100
years.)



Sustainable LT resources

Open source

Open source as a principle is essential to the future of LT
work for lesser-resourced languages.

The risks and costs are just too high to rely on closed-
source

This is true for the linguistic resources (lexicons,
grammars, etc.) (imagine these resources being
controlled by a third party)

... as well as for the technology used both for
development and in end-user products



Sustainable LT resources
Open source

Illustrative case

The Divvun proofing tools have been tied to a
commercial partner and their technology since the
beginning of the project

At that time there was no viable open-source alternative

During the last project they went bankrupt

When you have invested many man-years in a working
system, and a whole society is waiting for updates, this
is not what you were hoping for

Even though we were aware of such risks, and thought
we had made reasonable mitigations we nevertheless
were caught off-guard.

In a large time-scale perspective, this will happen over
and over again, even so that major applications and
operating systems will disappear and new ones will
come.

The only reasonable answer to this is to control the full
development stack.

And for small communities the only practical way of
doing this is through open source, as part of a larger



community of users and developers for many
languages.



Sustainable LT resources
Open source

The Divvun/GT
development stack

At present we have a development stack based on open-
source technologies for the following components:

morphological analysis and generation (HFST + (earlier
only) Xerox FST tools)

disambiguation and syntactic parsing, even higher-
order analysis (HFST / Xerox tools + VISLCG3)

electronic dictionaries (XML)

spellers (HFST / Xerox tools)

hyphenators (HFST / Xerox tools)

Machine Translation (HFST + VISLCG3 + Apertium)

language learning (HFST + VISLCG3 + MySQL + ...)

We're working on the following:

grammar checker (VISLCG3)

speech synthesis (HFST + VISLCG3 + ??? - no open-
source synthesis engine yet, but that will be a natural
and logical extension)



We're still using Xerox a lot in our daily operations, but
over time all reliance on closed source should be at least
completely optional.



Sustainable LT resources
Open source

End-user tools

End users use what they use - open-source or not

we need to deliver to the users what they want

what is needed is then open-source in the development
stack

... but with support for both open and closed source in
the user stack

Based on experience it is important that the top layer of
closed source for integration with closed-source systems is
as thin as possible.



Sustainable LT resources
Open source

Isolation and
minimisation of closed
source

Take proofing tools as an example. What we should have
had to easily handle the bankruptcy of our subcontractor
should have been:

open-source for both development tools and end-user
tools

... but a very thin layer of integration code on top, to
make it work e.g. with MS Office

Then the cost of replacing this thin layer with another
would have been low

if you have a large user base, the costs could be spread
across several languages.

As far as possible this strategy should be used
everywhere for all products and services to future proof
as much as possible of the core technologies.



Sustainable LT resources

User And Developer
Community

Some time in the future somebody will have to inherit
our code

a strong user and developer community is essential for
long-time viability of the code

... this is the real issue when it comes to building LT
resources for the next 100 years



Sustainable LT resources
User And Developer Community

New generations of
developers

A strong community is important to foster education
and new generations

it should be the basis for knowledge transfer from the
old guys to the next generation

the new developers should preferably come from the
user community

this has some practical consequences:



Sustainable LT resources
User And Developer Community

New generations of developers

Inviting newcomers

The barrier to entry should be as low as possible

it should be easy to check out/download the code, do some
changes, compile, test, install, and see that the changes are
reflected in the installed speller, dictionary or whatever

the initial setup of the development evnironment
should be fully automatic

the introduction to the source code should follow a
learning path

the development environment needs to include
systematic and automated testing of all components of
the LT building

... and be fully integrated in the development process,
so that it can tell newcomers whenever their additions
and changes have caused something to break



Sustainable LT resources
User And Developer Community

End-user community

In the long (and not-so-long) run, no LT project or LT
development can exist in isolation.

But building a real and functioning relationship
between end users and developers isn't easy



Sustainable LT resources
User And Developer Community

End-user community

Goals for end user
community building

What should the end user community provide?

Why do we need one?

a thriving end user community is the ultimate proof of
success

a thriving end user community is producing texts in
their own language - hopefully with the help of the
tools we provide

devoted users give feedback and suggestions for
improvements

they may even provide (some of) their texts for inclusion
in a corpus

new corpus texts can be the basis for:

improved tools

(suggestions for) new terminology

new dictionary entries and examples

... generally new data for all LT purposes





Sustainable LT resources
User And Developer Community

End-user community

Goals for end user
community building
(cont.)

In the best of cases this can turn into a positive circle,
where all parts has the feeling that they both contribute
and gets something in return - a win-win situation.

This is what we really want, even more so because:

Out of such a user community new developer
generations can grow.

New developer generations are the ultimate target for
Sustainable LT Resources, as:

in the end the human resources are the most valuable
LT resource for lesser-resourced languages

planning for sustainable LT resources means making
oneself replaceable, and prepare for ones own
nonexistence



Sustainable LT resources
User And Developer Community

End-user community

Building user
communities

There is no simple answer, but here's a list of things we
have learned (or are trying to learn):

be present where the users are

it won't work to create arenas to which users are invited (we
have tried)

=> it is better to join existing forums

be active and show that you care in responses to the
users

release often with updates from the users

in cases where you can't follow user suggestions, be
polite and clear when explaining why



Sustainable LT resources
User And Developer Community

End-user community

Building user
communities (cont.)

visit user groups, such as:

language centras

schools

municipalities

other important events and places for the language
community

use modern technology to build a distributed developer
organisation, even in cases where there is one common
employer

learn from the open source community :)



Sustainable LT resources

Summary

I have tried to show a few steps one could take to build
Sustainable LT Resources for lesser-resourced languages:

shared infrastructure

shared code

look-ahead planning

flexible infrastructure

use open source everywhere possible

build user and developer communities, preferably for
many languages

foster the user community to produce new generations
of developers



Sustainable LT resources
Summary

Conclusion

For the types of languages we're concentrating on here,
the most important resource is the speaker
communities and the human resources

That is, the most important language technology
resources for the next 100 years are the speaker
communities.

If we invest in them, they will give back.

The rest is details

... sort of :-D



Sustainable LT resources
Summary

Conclusion

The End

More info at divvun.no and giellatekno.uit.no

Thanks for listening!
sjur.n.moshagen@uit.no












