Compiling Apertium dictionaries with HFST

leveraging generalised compilation formulas to get more and better end
applications with fewer language description

Tommi A Pirinen, Francis Tyers
tommi.pirinen@helsinki.fi

University of Helsinki, Universitat d'Alacant

May 22, 2012

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012


tommi.pirinen@helsinki.fi

Outline

© Introduction

© Benefits of this work

© Conclusion

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 2/8



Finite-state automata and HFST and apertium

o Finite-state automata are one efficient way to encode dictionaries,
morphological analysers etc.

@ HFST stands for Helsinki Finite-State Technology— consisting of a
library working as a compatibility layer between different open-source
finite-state implementations,

e SFST
e OpenFST
e Foma

@ Also a set of finite-state tools built on top of the library, and set of
end products using the automata in real-world applications (sold
separately)

@ HFST is still a research project in a computational linguistics’ research
group—not computer science or engineering

@ apertium is a machine-translation platform that uses finite-state
dictionaries

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 3/8



Compiling apertium dictionaries with HFST—rationale

“just an engineering exercise”

getting all language descriptions to compile natively in HFST (as
opposed to converting compiled automata)

using existing (and future) HFST algorithms to improve the resulting
automata

using bits of linguistic information to get better auxiliary automata for
HFST end applications — data that may not be possible to induct
from converted compiled automata

possibility to integrate more complex features in of finite-state
morphology in apertium dictionaries—morphophonetics, reduplication
etc. that may be supported by other HFST tools

this paper fits nicely in my PhD thesis under “State of the art of in
language models”

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 4/8



Examples of immediate benefits to dictionary writers

@ A lot of current work in building NLP software involves management
of huge amounts of lexical data

o ..like generating different language models in different morphology
programming formalisms: apertium, hunspell, xerox tools

@ getting native and uniform compilation formulas for all lets you write
dictionaries once and use everywhere

@ or pick and mix tools and features from different formalisms

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 5/8



Examples of additional applications that can be generated

from apertium dictionaries with this work

@ Spell-checkers! A basic spell-checker with generic edit distance
suggestion generator can be automatically generated—and used in
majority of current open-source software without any extra effort

@ Predictive text entry, for mobiles, such T9, XT9, possibly swype and
keyboard as well

@ Morphological analysers, lemmatisers, segmenters, tokenisers, etc.,
obviously

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 6/8



Examples of benefits that come for free—automatic

optimisation

@ depending on library / end format you choose for compiled
dictionaries, you get speed—space tradeoffs (or improvements in both)

@ This is work-in-progress, but once done it can be used in all
dictionaries without modifications to sources

@ automatic flag diacritic induction
@ hyperminimisation

@ all this can be based on things like finding homomorphic components
from the finite-state automaton

@ the linguistic concepts present in source code but missing from the
compiled automaton should prove very useful here!

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 7/8



What now?

@ The reference material for the article is in our svn http:
//hfst.svn.sf.net/svnroot/hfst/trunk/lrec-2011-apertium,
includes compilation of spell-checkers for most apertium dictionaries

@ what do we do to remove duplicate work, duplicate versions of
dictionaries, conversion scripts. ..

@ more compilers? Conversion scripts? New programming languages?
New “standards” that everyone will use?

@ I'll throw you this: | need more linguistic data and less engineering in
the language model implementations to compile more applications
from one source dictionary. Example: LR/RL concept in apertium or
asymmetric flags in Xerox FSM is engineering hack POV; had the
description called it substandard or dialectal word form it would
already be usable in all applications!

Tommi A Pirinen (Helsinki) Compiling apertium monodix with HFST May 22, 2012 8/8


http://hfst.svn.sf.net/svnroot/hfst/trunk/lrec-2011-apertium
http://hfst.svn.sf.net/svnroot/hfst/trunk/lrec-2011-apertium

	Introduction
	Benefits of this work
	Conclusion

